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2.5 Summary and Perspective



Preface to General Aspects

Within this paper | try to show the similarities that exist aswell in the Theory of Hydrodynamic
Instabilites and in the Theory of Complex Systems. Both are trying to find out under which cir-
cumstances the system starts to behave in complex way. They use different set of vocabulary but
use similar mathematical tools.

Instabilites are very important effects that give rise to a number of phenomena which are essentially
connected to life itself. The weather or the magnetosphere of the earth are only possible because
instabilities exists.

My overall aim is to find a general description to such complex systems as life, which is the most
complex one among all complex systems we know. Still there exists no satisfying definition of life
from the physical point of view. By investigating complex systems | think one is on the right way
to understand what is life.

| want to thank Helfried Biernat for supporting and motivating me and giving me the possibility
to prepare this talk for his lecture.

Florian Wodlei
Klagenfurt, am 24.1.2009






Preface to .
A Criterion for the Formation of Complex Systems

After | gave my first talk about the General Aspects between (magneto)hydrodynamic instabil-
ities and dissipative systems | wanted to find a criterion when such complex systems occur. With
the help of the book by Nicolis and Prigogine Selforganization in Nonequilibrium Systems [2] |
could imagine how such a criterion should look like. My progress in understanding this criterion is
the topic of this paper. For a better understanding | also suggest to read my paper about Entropy
and Pattern Formation in Complex Systems
Again thanks to the inestimable support by Helfried Biernat, who gave me the possibility to prepare
this talk for his lecture.

Florian Wodlei
Graz, am 18.6.2009






General Aspects

1.1. Selected Examples of Instabilities

| want to give here some examples of instabilities which are in contrast to the Rayleigh-Taylor
or the Kelvin-Helmholtz instabilities normally mentioned within the context of Complex Systems.
That are the Rayleigh-Bénard instability and a more complicated system the Belousov-Zhabotinsky
reaction.

1.1.1. The Rayleigh-Bérnard Instability

The Rayleigh-Bénard instability is a thermal hydrodynamic instability that forms in horizontal layers
of fluid heated from below (see figure 1). If the temperature difference AT between the heated
bottom and the upper layer exceeds a critical value AT,, the layer in between exhibits a bulk
motion, which is called thermal convection.

The first sophisticated experiment was made by Bénard in 1900, though the phenomenon of
thermal convection itself had been recognized earlier by Count Rumford in 1797 and James Thom-
son in 1882.

Rayleigh showed that what decides the stability is the numerical value of the nondimesional pa-
rameter, which is called the Rayleigh number

ATd?
_ gaATd” (1.1)
RV

Where g denotes the acceleration due to gravity, AT the temperature difference d the depth
of the layer and o, k and v are the coefficient of volume expansion, thermomtric conductivity and

R
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(a) The RB-instability in a layer (b) magnified part of the RB-instability of the left picture. Note the hexagonal
of aluminium shape of the convection cells

Figure 1.1: The Rayleigh-Bénard instability

kinematic viscosity, respectively. Rayleigh showed that for a critical R = R, macroscopic patterns
appear.

1.1.2. The Belousov Zhabotinsky Reaction

| would add the Belousov Zhabotinsky reaction to the type of (chemical) reaction instabilities. The
Belousov Zhabotinsky reaction was first discovered by Belousov a russian scientist in 1950 but the
importancy of this reaction was not recognized by the scientific community. When Zhabotinsky
started the investigation of the reaction around 1960 the work was taken more serious also outside
the soviet union.

llya Prigogine got his nobel prize for his work on the topic of complex systems where he also
investigated the Belousov Zhabotinsky reaction.

The Belousov Zhabotinsky reaction is a liquid chemical reaction with almost only anorganic
components. All of them not very exotic like sulfuric acid, sodium bromate, sodium bromide and
as organic compound, malonic acid and ferroin. If put together in a arbitrary way nothing will
happen, the solution remains homogeneous. There exists a critical start concentration set
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(a) The BZ Reaction realized on a plate (b) magnfied part of the BZ reaction from left picture. Note the
spirallike behaviour

Figure 1.2: The Belousov Zhabotinsky reaction

(e} = {cferie.} (1.2)

with ¢ the start concentrations of the components, for which the solution starts to form macro-
scopic patterns (like those shown in figure 2).

1.2. What is a Pattern?

In the everyday life it seams not to be difficult to identify a pattern, like the pattern of the clouds
in the sky or the pattern of the coffee ground. A physical definition of it on the other hand is more
difficult to find.

If an object shows a pattern that means that there exists a symmetry. Symmetries are very
important in theoretical physics since to every symmetry there exists a conservation law (Emmy
Noether [1], [2]).

But what exactly is a symmetry? The symmetry is a phenomenon under which an object re-
mains unchanged if a transformation is applied. In figure 3 | give some examples of objects which
show symmetries.

Now that we know what is a pattern we can make the connection to complex systems or in
other words (hydrodynamic) instabilities. If we look at figure 1 and 2 we see pattern. In figure 1



10 CHAPTER 1. GENERAL ASPECTS

° ° L[] L] L L] L] L] L]
L] L] L] L] L] L] ° [ ]
L[] L] [ L] [ ] L [ ] ° [ ] [ ]
o ° ° ° o ° ° °
[ ] [ ] L[] [ ] —O L] ° °
\
. o L 3 o 1 ] ° ° °
o ° ° /
° ° - - ° g
o ° ° ° ] o ° °
L] L] [ ] ] L] L] L]
L] L] L] ° L L] L]

Q
(o

Figure 1.3: Examples of symmetries. (a) a hexagonal symmetry as example for translational
symmetry. (b) a distorted hexagonal symmetry as another example for translational symmetry. (c)
cylindrical symmetrie with discrete radial symmetry. (d) cylindrical symmetry with geometric radial
symmetry. (e) The Sierpinski triangle as an example of scale or fractal symmetry. (f) another
example of scale or fractal symmetry
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the thermal convection cells show hexagonal symmetry. In figure 2 the wave fronts show cylindrial
symmetry.

1.3. The Connection between Instability and Pattern Formation

1.3.1. The Rayleigh-Bénard Instability

For simplicity we will discuss here a simple Rayleigh-Bénard setup where we have a experimental
setup like shown in figure 4. Here we have two plates which are cylindric to the y-axis and between
the plates we have fluid. Where at the start the plates have the same temperature (71 = T5) and
for that reason the fluid is in a homogeneous state. The homogenity of the system extends to all
its properties, and in particular to its temperature. Such a state is usually called an equilibrium
state of the system.

If we would now apply a local temperature rise on one of the plates the system would not

feel effected by this so called perturbation and would return to the equilibrium state. By heating
the fluid layer from below we give rise to a temperature gradient of AT. This state where the
temperature gradient is not very big is called thermal conduction and the properties along this
gradient differs practically in linear fashion. As long as this external constraints exists, the state is
not in equilibrium but stable.
If we remove the system farther and farther from equilibrium by increasing AT, suddenly at a
critical value AT, the system becomes unstable®. If now a perturbation? is applied the system is
not coming back to equilibrium but enters a new state which is usualy called a far from equilibrium
state. In this state a number of new phenomena occurs. The fluid begins to perform a bulk
movement which is far from random, in our terms we would call it a pattern. The fluid is now
structured in a series of small convection cells (see figure 4) known as Bénard cells.

1.3.2. The Belousov Zhabotinsky Reaction

The Belousov Zhabotinsky reaction is a hydrodynamical system in which chemical reactions occur.

In contrast to pure hydrodynamical systems, where the forces only come from the external
forces the Belousov Zhabotinsky reaction shows effects due to the fact that chemical reactions
occur. A chemical reaction is usually described by a reaction equation like

A+B=C+D (1.3)

1This unstable behaviour at the critical value AT is responsible that this phenomenon has the name instability
2This perturbations are usually the internal fluctuations generated by the system itself
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Figure 1.4: Formation of convection cells known as Bénard cells

Where the left arrow describes the backreaction. For the Belousov Zahbotinsky Reaction we have
a complicated set of reaction equations. The Belousov Zahbotinsky reaction can be seen as a
three step cycle. The first step is given by

BrO3; +5Br~ +6H' — 3Bry + 3H20 (1.4)

The intermediate H BrO2 begins reaction with bromate as the step one slows done. This is the
beginning of the second step which is given by

BrO3 + HBrOy +2Ce*™ + 3H' — 2HBrOy + 2Ce*" + HyO (1.5)

The intermediate radical molecule BrOs is rapidly oxidizing the catalyst (Ce3") and turning into
a HBrOs. Thus leading to an increase in HBrQO,. This allows autocatalysis. As step one and
step two removes bromide ion and oxidize the catalyst, the last step of the cycle has to come
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to the start by producing bromide ion and bringing the catalyst in its reduce form. This can be
decribed by

20t + BrCH(CO2H)y + CHy(CO2H )2 — f Br™ + 203t + other products (1.6)

where f is an unknown stoichiometric coefficient. For the spatial pattern formation like shown in
figure 5 we also need to add a diffusion term to the corresponding equations.

If we have this cycle the complete system is at that point already in a nonequilibrium state. How
can one describes the step from equilibrium to nonequilibrium for this reaction? In the Bénard
problem we were able to move the system to a nonequillibrium state by applying a small temperature
gradient - the equivalence here would be to bring the system to a state where it can start this
cyclic behavior. Can we expect from such a system a behaviour like in the Benard problem? Here
the criticality arises from the start concentrations of the constituents. Because of the criticality of
the concentrations, the system shows after a few seconds complex behaviour in forming cylindrical
waves (see figure 5).

Figure 1.5: Formation of cyclic and spirallike structures in the Belousov Zahbotinsky reaction
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1.3.3. The hydrodynamic Instabilites

From the viewpoint of complex systems the hydrodynamic instabilites are also complex systems.
Here we make the connection to the above described systems.

1.3.3.0.1. The Rayleigh-Taylor Instability is an interface instability which occurs between
two fluids when the lighter fluid is pushing the heavier fluid. The effect is that so called "fingers"
form (see figure 6a/b). One can find that if

p2 > p1 (1.7)

The system remains in a nonequillibrium state and if
p2 < p1 (1.8)

the system is unstable for all disturbance with wavenumbers smaller then

(p2 — p1)g
B (1.9)

kcrit. =

1.3.3.0.2. The Kelvin Helmholtz Instability is also an interface instability which occurs be-
tween two fluids when one fluid is flowing over another. The effect is the evolution of spirals on
the interface (see figure 6¢/d).

Also here one can find a criterion under which circumstances the system is unstable. For all
(horizontal) disturbances with wavenumber bigger then

2 o
g P1— P2

1.10
U? p1p2 (1.10)

where g denotes the acceleration due to gravity, U is the velocity in z-direxction and p; being the

kcrit. =

densities of the two layers, the system is unstable.
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C d
(a) The Rayleigh-Taylor (a/b) and the Kelvin-Helmholtz (c/d) instability
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(b) A simulation of the Rayleigh-Taylor instability where as a result of the
induced velocity gradient also Kelvin-Helmholtz instabilities occur (details
see [5])

Figure 1.6: The Rayleigh-Taylor and the Kelvin-Helmholtz instability

15
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1.4. Multistability and dissipative Structures

Towards a general Formulation of Complex Systems

Like Prigogine suggests the domain of the dissipative structures, the stable complex systems, is
the nonlinear branch of nonequilibrium thermodynamics. Only far from equilibrium such structures
are able to occur.

Thermodynamisc should be classified like in table 1.

Thermostatics linear Thermodynamics nonlinear Thermodynamics
i.e. Thermodynamics i.e. nonequillibrium Thermodynamics i.e. far from equilibrium Thermodynamic
equilibrium systems diffusion, heat conduction dissipative structures
quasistatic processes hydrodynamic instabilites

complex systems

Table 1.1: classification of "thermodynamics"

1.4.1. Multistability

What is usually studied in the theory of hydrodynamic Instabilities is the reaction of system to a
perturbation and moreover the conditions when a system switches from a nonequilibrium state to
an far from nonequilibrium state where patterns occur.

In the vocabulary of complex systems this state would be called a dissipative system. The term
instability then is nomore fitting to this phenomena because the phenomena seams to be stable.
To make it more general one should talk in terms of Multistability.

This would include the transition from a (meta)stable nonequilibrium state to a stable far from
equilibrium state - a dissipative structure. The term instability is then ment in the sense that the
(meta)stable state becomes instable and turns to another stable state, the far from equilibrium
state.

1.4.2. Why dissipative structures can only occur far from equilibrium?
The Minimum Entropy Production Theorem

In the linear thermodynamical regime the minimum entropy production theorem drives the system
back to a steady state (i.e in the Bénard problem the system would if exposed to an perturbation
return to the thermal conduction state) so that its impossible to form dissipative structures.
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The entropy production S plays the role of the thermodynamic potentials (i.e. the Gibbs
energy GG, the enthalpy H,...) in the equilibrium thermodynamic.

Thermostatic linear Thermodynamic

Figure 1.7: The stability of nonequibrium states ( where the abscissa is a variable describing the
system).






A Criterion for the Formation of
Complex Systems

2.1. Introduction

Compared to the last chapter this chapter is more general and the theory developped here applies
to all the systems discussed in last chapter.
Here | am going to derive a general criterion for the formation of complex systems which forms
beyond the linear range, i.e. beyond the Theorem of Minimum Entropy Production. Therefore
we need the branch of Nonequilibrium Thermodynamics. In the following sections | am going to
introduce the needed terms and definitions.

2.2. lIrreversible Processes in Thermodynamics

From the second theorem of Carnot it follows that for an isolated system (i.e. Q) = 0) in which
irreversible processses occur the following equation is true

Sp—8; >0 (2.1)

This is sometimes considered as an alterntive formulation of the second principle of thermodynam-
ics. It says that in an isolated system the entropy does not change during a reversible process.
On the other hand it says that in an isolated system the entropy increases during an irreversible
process.

19
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2.3. Nonequilibrium Thermodynamics

2.3.1. Local Formulation in Nonequilibrium Thermodynamics

The system of our interest are neither in equilibrium nor isolated. The systems which we adress
are biological systems. From the thermodynamical standpoint those systems are open systems,
which constantly exchange energy and matter with the environement.

In such a situation it is convenient to work with a local macroscopic description of matter. We
define the entropy density s, as

S = /sde (2.2)

the entropy is then a local function of the state variables p;, i.e. the concentrations of the chemical
components of the system. This concentrations vary in space and time.

Sy = Sylp1(r,t), pa(r,t), ..., pn(r,t)] (2.3)

2.3.2. Entropy Production in Nonequilibrium Systems

From the standpoint of entropy an open system is producing and exchanging entropy with the
environement during the time (see figure 1). That means after a time period the total entropy

Figure 2.1: open system producing entropy (d;S) and exchange entropy (d.S) with the environe-
ment

changes like
dS =d.S+d;S (2.4)
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To calculate the entropy production we first calculate the time derivative of the entropy density

08, 0y 0p;
ot ; Op; Ot (2.5)

with a local formulation of Gibbs fundamental equation we get

asv g
=—— 2.6
o T (2.6)
Then we have for the time derivative of the entropy density
05, i Op;
_ N M 2.7
ot —~ T ot (27)

To get an expression for %pti we investigate the mass-balance equation.

2.3.2.1. Mass-Balance Equation

The total mass change in an open system is

given by the internal reactions and the ex- // jZ
R IANCS'

change with the environement

dmx. dimx. demx. . \
J — ! J + c z (28) o ﬁ’// ‘|
dt dt dt e .
e :
demx . . i N
The term ——% is given by the penetration XX E
of mass through the surface boundary 3 and ' 1***4*n /!
yields \
demx; >
=— Y. -1 dX 2.9 Teell- ---
= (29)

domx. Figure 2.2: open system consisting of the chemical
The term —z== is given by the internal chem-  constituents X, exchanging the fluxes 3%, with the
ical reaction® of the open system. environement

lthe mass which is created in the system can also be created by other processes not explicit by chemical reactions.
For example it could be created by radioactive transformations or elementary particle processes - still the description
is analogous



22 CHAPTER 2. A CRITERION FOR THE FORMATION OF COMPLEX SYSTEMS

Suppose we have a set of chemical reactions in a small volume AV of the system
A+ X; 5 A+ B, A+2X; 3 A+B+C (2.10)

where k1 is the rate constant of the reaction. Then the reaction rate (change of a the mass of a
constituent per time) for the constituent X is given by

Wi = —kipa px, AV, Wy = —kapa pi, AV (2.11)

The stoichiometric coefficients of the constituent in this reactions are 2 and 1. Therefore the mass
change in the volume AV of the constituent X is given by

demx.
= 2kpa px, AV = 2kapa pi, AV (2.12)

General for a arbritrary reaction we would have for the total mass change in the volume AV of
the constituent X is

emX Z vir Wy (2.13)

where v, is the stoichiometric constant of the constituent X; involved in the reaction r and
summed over all reaction. If we introduce the reaction rate per unit volume w, we have

demx.,
= ;ujr/wr dv (2.14)

Summing up and inserting the identity my, = [ pj dV we get the total mass change of the
constituent X

d
o | px; AV = Zujr/wr dv — /Zj)%j-ndZ (2.15)

With the Gaussian divergence theorem we get
d
- [ px; AV = Zyﬂ/wr dv — /V jx, dV (2.16)

a local equation for py, is obtained by

3PX

Zujrwr V- jx; (2.17)

This is the required equation. Now we can come back to the equation (2.7). Inserting (2.17) in

(2.7) we get
05y Z g .
B = — 13(2 :erwr—v-]xj) (2.18)

J




2.3. NONEQUILIBRIUM THERMODYNAMICS

RIS ON UL N ALE
r J

J

We now introduce the chemical affinity . of the reaction r as
oy = — Z Vi
J

and we get

05y . I .
ot :ZT TwTJFZj 7V 9%
With the following identity
Wi . . iy .
V(%”ﬂ‘) =ix, Vot gV,

we can further rewrite the last equation to

If we define the entropy flux density as Js = — Zj %jxj we get

05y <y, . Ky

ot Z?U}T - ZJXJ ' V? -V
r J

Bringing the last term to the left hand side we get

05y . <y, . Hy
o —I—VJS—;TwT—;JXj.VT

X 2 (i) - Envg
r 7 J
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(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

We can identify the left hand side as the total derivative of the entropy density with respect to

time, and that is the reason why the right hand side is called entropy production density o

r

=Y Ty - i, v
J

In other words
ds,

dt
If we take the volume integral of equation (51) we get

(2.1)
dS:/adV >0
dt

=0

From here we get a local formulation of the second principle, i.e.

oc>0

(2.26)

(2.27)

(2.28)

(2.29)
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2.4. Beyond the Theorem of Minimum Entropy Production

A realistic description of chemical or analogous reaction requires an extension of the theory to the
nonlinear range where the affinity is within the range of several kT"s, i.e.

of > kT (2.30)

The entropy production density is (from equation (2.26))

Ay : 14
J:zr:Twr_Zj:JXj "V (2.31)
We can now generalize the last equation by defining generalized forces, X and flows, J.
JET = g X v“ﬂ
Jreact = . Xt .= o, (2.32)

Then we get for the entropy production density the following expression

o=> JX (2.33)

Therefore the entropy production S yields

S = /dVJ = /dVZJka (2.34)
k

Similar to the Minimum Entropy Production case we are interested in the stability. Therefore we
investigate the time derivative of the entropy production S

S = /dvzf = /dV > (JeXi + JeXe) (2.35)
k

Beyond the linear range this expression does not exhibit any property of general validity. However
in the linear range it leads to the Minimum Entropy Production Theorem

2.4.1. A general Criterion

We want now to extend the Minimum Entropy Production Theorem by coming back to the ex-
pression (2.32). By derivating with respect to time we get

S = /dV Zg{wr ZJX Vi, _;/dv Ztgz./,‘wr—zc(l];(jxj.v;tj)
T J

(2.36)
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First we investigate the second term in the last equation, i.e.
d . (2.22) .
vy o (i, Vi) = dVZ & [V Gx,m) = 15V - x| (2.37)
J

in the first term in the last equation we transform the integral into a surface integral, i.e.

d ) d ) d .
dt; /dan-]Xj,Uj —/dvzj:dt(,ujv.]Xj) :_/dV;dt(MjV'JXj) (2.38)

for sufficient boundary
conditions this yields 0

with the product rule we get
8jX.
/dvzdt iV - jx;) /dVZ( A v Jx; + af) (2.39)

in the second term in the last equation we transform the integral into a surface integral, i.e.

/dvzdt 1V - jx,) /dvz vy Z/dzng- S (2.40)
J

for sufficient boundary
conditions this yields 0

We are left with the following expression for the second term in equation (2.37]2)
a#]
/dvzdt ix, Vi) = /dVZ V. jx, (2.41)

inserting this we get for S

/dV Z%wT+Z “JV (2.20) 1/dV Zwrwkauk Za“ﬂv ix

(2.42)
now we can put Zk Z5# as common factor in front and we get

O, . 1 Oy Opx
/dvz [—Z:wrl/nk +V 'JXk] = _T/dvzk:at o5 (2.43)

Bpxk
ot

from (2.18) this is —

since pu is a function of {p;}; we get

% 1 Oy Opr Opx,
- 2.44
s T/dvkz; Dp. Ot Ot (2:44)
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It can be shown? that the quadratic form

Ouy Opx, Opx,
2 9p, 0t ot

(2.45)

is positive definit. That result in
S<0 (2.46)

This is the general criterion for the stability of far from equilibrium states.

2.5. Summary and Perspective

The aim of this paper was to give a general introduction into complex systems and hydrodynamic
instabilites in the first chapter. In the second chapter the aim was to give an introduction to the
theory of far from equilibrium thermodynamics and the connection to the formation of complex
systems. Moreover | wanted to show that there exists a general criterion for which a nonequilibrium
system is stable.

That a far from equilibrium system is stable is one important point but that a far from equilibrium
system does form pattern is another. As a perspective | am going to investigate the need for the
formation of pattern in a far from equilibrium state in connection to this general criterion.

2with the help of the inequalities of the thermodynamic potentials, similar to the linear range
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