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Preface to General Aspects

Within this paper I try to show the similarities that exist aswell in the Theory of Hydrodynamic

Instabilites and in the Theory of Complex Systems. Both are trying to �nd out under which cir-

cumstances the system starts to behave in complex way. They use di�erent set of vocabulary but

use similar mathematical tools.

Instabilites are very important e�ects that give rise to a number of phenomena which are essentially

connected to life itself. The weather or the magnetosphere of the earth are only possible because

instabilities exists.

My overall aim is to �nd a general description to such complex systems as life, which is the most

complex one among all complex systems we know. Still there exists no satisfying de�nition of life

from the physical point of view. By investigating complex systems I think one is on the right way

to understand what is life.

I want to thank Helfried Biernat for supporting and motivating me and giving me the possibility

to prepare this talk for his lecture.

Florian Wodlei

Klagenfurt, am 24.1.2009
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Preface to
A Criterion for the Formation of Complex Systems

After I gave my �rst talk about the General Aspects between (magneto)hydrodynamic instabil-

ities and dissipative systems I wanted to �nd a criterion when such complex systems occur. With

the help of the book by Nicolis and Prigogine Selforganization in Nonequilibrium Systems [2] I

could imagine how such a criterion should look like. My progress in understanding this criterion is

the topic of this paper. For a better understanding I also suggest to read my paper about Entropy

and Pattern Formation in Complex Systems

Again thanks to the inestimable support by Helfried Biernat, who gave me the possibility to prepare

this talk for his lecture.

Florian Wodlei

Graz, am 18.6.2009





1
General Aspects

1.1. Selected Examples of Instabilities

I want to give here some examples of instabilities which are in contrast to the Rayleigh-Taylor

or the Kelvin-Helmholtz instabilities normally mentioned within the context of Complex Systems.

That are the Rayleigh-Bénard instability and a more complicated system the Belousov-Zhabotinsky

reaction.

1.1.1. The Rayleigh-Bérnard Instability

The Rayleigh-Bénard instability is a thermal hydrodynamic instability that forms in horizontal layers

of �uid heated from below (see �gure 1). If the temperature di�erence ∆T between the heated

bottom and the upper layer exceeds a critical value ∆Tc, the layer in between exhibits a bulk

motion, which is called thermal convection.

The �rst sophisticated experiment was made by Bénard in 1900, though the phenomenon of

thermal convection itself had been recognized earlier by Count Rumford in 1797 and James Thom-

son in 1882.

Rayleigh showed that what decides the stability is the numerical value of the nondimesional pa-

rameter, which is called the Rayleigh number

R =
gα∆Td3

κν
(1.1)

Where g denotes the acceleration due to gravity, ∆T the temperature di�erence d the depth

of the layer and α, κ and ν are the coe�cient of volume expansion, thermomtric conductivity and

7



8 CHAPTER 1. GENERAL ASPECTS

(a) The RB-instability in a layer

of aluminium

(b) magni�ed part of the RB-instability of the left picture. Note the hexagonal

shape of the convection cells

Figure 1.1: The Rayleigh-Bénard instability

kinematic viscosity, respectively. Rayleigh showed that for a critical R = Rc macroscopic patterns

appear.

1.1.2. The Belousov Zhabotinsky Reaction

I would add the Belousov Zhabotinsky reaction to the type of (chemical) reaction instabilities. The

Belousov Zhabotinsky reaction was �rst discovered by Belousov a russian scientist in 1950 but the

importancy of this reaction was not recognized by the scienti�c community. When Zhabotinsky

started the investigation of the reaction around 1960 the work was taken more serious also outside

the soviet union.

Ilya Prigogine got his nobel prize for his work on the topic of complex systems where he also

investigated the Belousov Zhabotinsky reaction.

The Belousov Zhabotinsky reaction is a liquid chemical reaction with almost only anorganic

components. All of them not very exotic like sulfuric acid, sodium bromate, sodium bromide and

as organic compound, malonic acid and ferroin. If put together in a arbitrary way nothing will

happen, the solution remains homogeneous. There exists a critical start concentration set
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(a) The BZ Reaction realized on a plate (b) magn�ed part of the BZ reaction from left picture. Note the

spirallike behaviour

Figure 1.2: The Belousov Zhabotinsky reaction

{coi } = {coi,crit.} (1.2)

with coi the start concentrations of the components, for which the solution starts to form macro-

scopic patterns (like those shown in �gure 2).

1.2. What is a Pattern?

In the everyday life it seams not to be di�cult to identify a pattern, like the pattern of the clouds

in the sky or the pattern of the co�ee ground. A physical de�nition of it on the other hand is more

di�cult to �nd.

If an object shows a pattern that means that there exists a symmetry. Symmetries are very

important in theoretical physics since to every symmetry there exists a conservation law (Emmy

Noether [1], [2]).

But what exactly is a symmetry? The symmetry is a phenomenon under which an object re-

mains unchanged if a transformation is applied. In �gure 3 I give some examples of objects which

show symmetries.

Now that we know what is a pattern we can make the connection to complex systems or in

other words (hydrodynamic) instabilities. If we look at �gure 1 and 2 we see pattern. In �gure 1
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Figure 1.3: Examples of symmetries. (a) a hexagonal symmetry as example for translational

symmetry. (b) a distorted hexagonal symmetry as another example for translational symmetry. (c)

cylindrical symmetrie with discrete radial symmetry. (d) cylindrical symmetry with geometric radial

symmetry. (e) The Sierpinski triangle as an example of scale or fractal symmetry. (f) another

example of scale or fractal symmetry
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the thermal convection cells show hexagonal symmetry. In �gure 2 the wave fronts show cylindrial

symmetry.

1.3. The Connection between Instability and Pattern Formation

1.3.1. The Rayleigh-Bénard Instability

For simplicity we will discuss here a simple Rayleigh-Bénard setup where we have a experimental

setup like shown in �gure 4. Here we have two plates which are cylindric to the y-axis and between

the plates we have �uid. Where at the start the plates have the same temperature (T1 = T2) and

for that reason the �uid is in a homogeneous state. The homogenity of the system extends to all

its properties, and in particular to its temperature. Such a state is usually called an equilibrium

state of the system.

If we would now apply a local temperature rise on one of the plates the system would not

feel e�ected by this so called perturbation and would return to the equilibrium state. By heating

the �uid layer from below we give rise to a temperature gradient of ∆T . This state where the

temperature gradient is not very big is called thermal conduction and the properties along this

gradient di�ers practically in linear fashion. As long as this external constraints exists, the state is

not in equilibrium but stable.

If we remove the system farther and farther from equilibrium by increasing ∆T , suddenly at a

critical value ∆Tc the system becomes unstable1. If now a perturbation2 is applied the system is

not coming back to equilibrium but enters a new state which is usualy called a far from equilibrium

state. In this state a number of new phenomena occurs. The �uid begins to perform a bulk

movement which is far from random, in our terms we would call it a pattern. The �uid is now

structured in a series of small convection cells (see �gure 4) known as Bénard cells.

1.3.2. The Belousov Zhabotinsky Reaction

The Belousov Zhabotinsky reaction is a hydrodynamical system in which chemical reactions occur.

In contrast to pure hydrodynamical systems, where the forces only come from the external

forces the Belousov Zhabotinsky reaction shows e�ects due to the fact that chemical reactions

occur. A chemical reaction is usually described by a reaction equation like

A+B 
 C +D (1.3)

1This unstable behaviour at the critical value ∆Tc is responsible that this phenomenon has the name instability
2This perturbations are usually the internal �uctuations generated by the system itself
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Figure 1.4: Formation of convection cells known as Bénard cells

Where the left arrow describes the backreaction. For the Belousov Zahbotinsky Reaction we have

a complicated set of reaction equations. The Belousov Zahbotinsky reaction can be seen as a

three step cycle. The �rst step is given by

BrO−3 + 5Br− + 6H+ → 3Br2 + 3H2O (1.4)

The intermediate HBrO2 begins reaction with bromate as the step one slows done. This is the

beginning of the second step which is given by

BrO−3 +HBrO2 + 2Ce3+ + 3H+ → 2HBrO2 + 2Ce4+ +H2O (1.5)

The intermediate radical molecule BrO2 is rapidly oxidizing the catalyst (Ce3+) and turning into

a HBrO2. Thus leading to an increase in HBrO2. This allows autocatalysis. As step one and

step two removes bromide ion and oxidize the catalyst, the last step of the cycle has to come



1.3. THE CONNECTION BETWEEN INSTABILITY AND PATTERN FORMATION 13

to the start by producing bromide ion and bringing the catalyst in its reduce form. This can be

decribed by

2Ce4+ +BrCH(CO2H)2 + CH2(CO2H)2 → f Br− + 2Ce3+ + other products (1.6)

where f is an unknown stoichiometric coe�cient. For the spatial pattern formation like shown in

�gure 5 we also need to add a di�usion term to the corresponding equations.

If we have this cycle the complete system is at that point already in a nonequilibrium state. How

can one describes the step from equilibrium to nonequilibrium for this reaction? In the Bénard

problem we were able to move the system to a nonequillibrium state by applying a small temperature

gradient - the equivalence here would be to bring the system to a state where it can start this

cyclic behavior. Can we expect from such a system a behaviour like in the Benard problem? Here

the criticality arises from the start concentrations of the constituents. Because of the criticality of

the concentrations, the system shows after a few seconds complex behaviour in forming cylindrical

waves (see �gure 5).

a b c

d e f

Figure 1.5: Formation of cyclic and spirallike structures in the Belousov Zahbotinsky reaction
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1.3.3. The hydrodynamic Instabilites

From the viewpoint of complex systems the hydrodynamic instabilites are also complex systems.

Here we make the connection to the above described systems.

1.3.3.0.1. The Rayleigh-Taylor Instability is an interface instability which occurs between

two �uids when the lighter �uid is pushing the heavier �uid. The e�ect is that so called "�ngers"

form (see �gure 6a/b). One can �nd that if

ρ2 > ρ1 (1.7)

The system remains in a nonequillibrium state and if

ρ2 < ρ1 (1.8)

the system is unstable for all disturbance with wavenumbers smaller then

kcrit. =

√
(ρ2 − ρ1)g

γ
(1.9)

1.3.3.0.2. The Kelvin Helmholtz Instability is also an interface instability which occurs be-

tween two �uids when one �uid is �owing over another. The e�ect is the evolution of spirals on

the interface (see �gure 6c/d).

Also here one can �nd a criterion under which circumstances the system is unstable. For all

(horizontal) disturbances with wavenumber bigger then

kcrit. =
g

U2

ρ2
1 − ρ2

2

ρ1ρ2
(1.10)

where g denotes the acceleration due to gravity, U is the velocity in x-direxction and ρi being the

densities of the two layers, the system is unstable.
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a b

c d

(a) The Rayleigh-Taylor (a/b) and the Kelvin-Helmholtz (c/d) instability

(b) A simulation of the Rayleigh-Taylor instability where as a result of the

induced velocity gradient also Kelvin-Helmholtz instabilities occur (details

see [5])

Figure 1.6: The Rayleigh-Taylor and the Kelvin-Helmholtz instability
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1.4. Multistability and dissipative Structures

Towards a general Formulation of Complex Systems

Like Prigogine suggests the domain of the dissipative structures, the stable complex systems, is

the nonlinear branch of nonequilibrium thermodynamics. Only far from equilibrium such structures

are able to occur.

Thermodynamisc should be classi�ed like in table 1.

Thermostatics linear Thermodynamics nonlinear Thermodynamics

i.e. Thermodynamics i.e. nonequillibrium Thermodynamics i.e. far from equilibrium Thermodynamic

equilibrium systems di�usion, heat conduction dissipative structures

quasistatic processes hydrodynamic instabilites

complex systems

Table 1.1: classi�cation of "thermodynamics"

1.4.1. Multistability

What is usually studied in the theory of hydrodynamic Instabilities is the reaction of system to a

perturbation and moreover the conditions when a system switches from a nonequilibrium state to

an far from nonequilibrium state where patterns occur.

In the vocabulary of complex systems this state would be called a dissipative system. The term

instability then is nomore �tting to this phenomena because the phenomena seams to be stable.

To make it more general one should talk in terms of Multistability.

This would include the transition from a (meta)stable nonequilibrium state to a stable far from

equilibrium state - a dissipative structure. The term instability is then ment in the sense that the

(meta)stable state becomes instable and turns to another stable state, the far from equilibrium

state.

1.4.2. Why dissipative structures can only occur far from equilibrium?

The Minimum Entropy Production Theorem

In the linear thermodynamical regime the minimum entropy production theorem drives the system

back to a steady state (i.e in the Bénard problem the system would if exposed to an perturbation

return to the thermal conduction state) so that its impossible to form dissipative structures.
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The entropy production Ṡ plays the role of the thermodynamic potentials (i.e. the Gibbs

energy G, the enthalpy H,...) in the equilibrium thermodynamic.

Thermostatic linear Thermodynamic
G

S

Figure 1.7: The stability of nonequibrium states ( where the abscissa is a variable describing the

system).





2
A Criterion for the Formation of

Complex Systems

2.1. Introduction

Compared to the last chapter this chapter is more general and the theory developped here applies

to all the systems discussed in last chapter.

Here I am going to derive a general criterion for the formation of complex systems which forms

beyond the linear range, i.e. beyond the Theorem of Minimum Entropy Production. Therefore

we need the branch of Nonequilibrium Thermodynamics. In the following sections I am going to

introduce the needed terms and de�nitions.

2.2. Irreversible Processes in Thermodynamics

From the second theorem of Carnot it follows that for an isolated system (i.e. δQ = 0) in which

irreversible processses occur the following equation is true

Sf − Si ≥ 0 (2.1)

This is sometimes considered as an alterntive formulation of the second principle of thermodynam-

ics. It says that in an isolated system the entropy does not change during a reversible process.

On the other hand it says that in an isolated system the entropy increases during an irreversible

process.

19
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2.3. Nonequilibrium Thermodynamics

2.3.1. Local Formulation in Nonequilibrium Thermodynamics

The system of our interest are neither in equilibrium nor isolated. The systems which we adress

are biological systems. From the thermodynamical standpoint those systems are open systems,

which constantly exchange energy and matter with the environement.

In such a situation it is convenient to work with a local macroscopic description of matter. We

de�ne the entropy density sv as

S =
∫
svdV (2.2)

the entropy is then a local function of the state variables ρi, i.e. the concentrations of the chemical

components of the system. This concentrations vary in space and time.

sv = sv[ρ1(r, t), ρ2(r, t), . . . , ρn(r, t)] (2.3)

2.3.2. Entropy Production in Nonequilibrium Systems

From the standpoint of entropy an open system is producing and exchanging entropy with the

environement during the time (see �gure 1). That means after a time period the total entropy

Figure 2.1: open system producing entropy (diS) and exchange entropy (deS) with the environe-

ment

changes like

dS = deS + diS (2.4)
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To calculate the entropy production we �rst calculate the time derivative of the entropy density

∂sv
∂t

=
∑
i

∂sv
∂ρi

∂ρi
∂t

(2.5)

with a local formulation of Gibbs fundamental equation we get

∂sv
∂ρi

= −µi
T

(2.6)

Then we have for the time derivative of the entropy density

∂sv
∂t

= −
∑
i

µi
T

∂ρi
∂t

(2.7)

To get an expression for ∂ρi
∂t we investigate the mass-balance equation.

2.3.2.1. Mass-Balance Equation

Figure 2.2: open system consisting of the chemical

constituents Xi exchanging the �uxes jΣ
Xn

with the

environement

The total mass change in an open system is

given by the internal reactions and the ex-

change with the environement

dmXj

dt
=
dimXj

dt
+
demXj

dt
(2.8)

The term
demXj
dt is given by the penetration

of mass through the surface boundary Σ and

yields

demXj

dt
= −

∫
Σ

jΣ
Xj · n dΣ (2.9)

The term
demXj
dt is given by the internal chem-

ical reaction1 of the open system.

1the mass which is created in the system can also be created by other processes not explicit by chemical reactions.

For example it could be created by radioactive transformations or elementary particle processes - still the description

is analogous
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Suppose we have a set of chemical reactions in a small volume ∆V of the system

A+Xj
k1→ A+B, A+ 2Xj

k2→ A+B + C (2.10)

where k1 is the rate constant of the reaction. Then the reaction rate (change of a the mass of a

constituent per time) for the constituent Xj is given by

W1 = −k1ρA ρXj∆V, W2 = −k2ρA ρ2
Xj∆V (2.11)

The stoichiometric coe�cients of the constituent in this reactions are 2 and 1. Therefore the mass

change in the volume ∆V of the constituent Xj is given by

demXj

dt
= −2k1ρA ρXj∆V − 2k2ρA ρ2

Xj∆V (2.12)

General for a arbritrary reaction we would have for the total mass change in the volume ∆V of

the constituent Xj is
demXj

dt
=
∑
r

νjrWr (2.13)

where νjr is the stoichiometric constant of the constituent Xj involved in the reaction r and

summed over all reaction. If we introduce the reaction rate per unit volume wr we have

demXj

dt
=
∑
r

νjr

∫
wr dV (2.14)

Summing up and inserting the identity mXj =
∫
ρj dV we get the total mass change of the

constituent Xj

d

dt

∫
ρXj dV =

∑
r

νjr

∫
wr dV −

∫
Σ

jΣ
Xj · n dΣ (2.15)

With the Gaussian divergence theorem we get

d

dt

∫
ρXj dV =

∑
r

νjr

∫
wr dV −

∫
∇ · jXj dV (2.16)

a local equation for ρXj is obtained by

∂ρXj
∂t

=
∑
r

νjrwr −∇ · jXj (2.17)

This is the required equation. Now we can come back to the equation (2.7). Inserting (2.17) in

(2.7) we get
∂sv
∂t

= −
∑
j

µj
T

(∑
r

νjrwr −∇ · jXj
)

(2.18)
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∂sv
∂t

= −
∑
j

∑
r

µj
T
νjrwr +

∑
j

µj
T

∇ · jXj (2.19)

We now introduce the chemical a�nity Ar of the reaction r as

Ar = −
∑
j

µjνjr (2.20)

and we get
∂sv
∂t

=
∑
r

Ar

T
wr +

∑
j

µj
T

∇ · jXj (2.21)

With the following identity

∇
(µj
T

jXj

)
= jXj ·∇

µj
T

+
µj
T

∇ · jXj (2.22)

we can further rewrite the last equation to

∂sv
∂t

=
∑
r

Ar

T
wr +

∑
j

∇
(µj
T

jXj

)
−
∑
j

jXj ·∇
µj
T

(2.23)

If we de�ne the entropy �ux density as Js = −
∑

j
µj
T jXj we get

∂sv
∂t

=
∑
r

Ar

T
wr −

∑
j

jXj ·∇
µj
T
−∇Js (2.24)

Bringing the last term to the left hand side we get

∂sv
∂t

+ ∇Js =
∑
r

Ar

T
wr −

∑
j

jXj ·∇
µj
T

(2.25)

We can identify the left hand side as the total derivative of the entropy density with respect to

time, and that is the reason why the right hand side is called entropy production density σ

σ =
∑
r

Ar

T
wr −

∑
j

jXj ·∇
µj
T

(2.26)

In other words
dsv
dt

= σ (2.27)

If we take the volume integral of equation (51) we get

dS

dt
=
∫
σdV

(2.1)

≥ 0 (2.28)

From here we get a local formulation of the second principle, i.e.

σ ≥ 0 (2.29)
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2.4. Beyond the Theorem of Minimum Entropy Production

A realistic description of chemical or analogous reaction requires an extension of the theory to the

nonlinear range where the a�nity is within the range of several kT 's, i.e.

A ≥ kT (2.30)

The entropy production density is (from equation (2.26))

σ =
∑
r

Ar

T
wr −

∑
j

jXj ·∇
µj
T

(2.31)

We can now generalize the last equation by de�ning generalized forces, X and �ows, J .

Jdiffj := jXj Xdiff
j := −∇µj

T
Jreactr := wr Xreact

r := Ar (2.32)

Then we get for the entropy production density the following expression

σ =
∑
k

JkXk (2.33)

Therefore the entropy production Ṡ yields

Ṡ =
∫
dV σ =

∫
dV
∑
k

JkXk (2.34)

Similar to the Minimum Entropy Production case we are interested in the stability. Therefore we

investigate the time derivative of the entropy production S̈

S̈ =
∫
dV σ̇ =

∫
dV
∑
k

(J̇kXk + JkẊk) (2.35)

Beyond the linear range this expression does not exhibit any property of general validity. However

in the linear range it leads to the Minimum Entropy Production Theorem

2.4.1. A general Criterion

We want now to extend the Minimum Entropy Production Theorem by coming back to the ex-

pression (2.32). By derivating with respect to time we get

S̈ =
1
T

∫
dV

d

dt

∑
r

Arwr −
∑
j

jXj ·∇µj

 =
1
T

∫
dV

∑
r

Ȧrwr −
∑
j

d

dt

(
jXj ·∇µj

)
(2.36)
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First we investigate the second term in the last equation, i.e.∫
dV
∑
j

d

dt

(
jXj ·∇µj

) (2.22)
=

∫
dV
∑
j

d

dt

[
∇(jXjµj)− µj∇ · jXj

]
(2.37)

in the �rst term in the last equation we transform the integral into a surface integral, i.e.

d

dt

∑
j

∫
dΣnΣ · jXjµj︸ ︷︷ ︸

for su�cient boundary
conditions this yields 0

−
∫
dV
∑
j

d

dt
(µj∇ · jXj ) = −

∫
dV
∑
j

d

dt
(µj∇ · jXj ) (2.38)

with the product rule we get

−
∫
dV
∑
j

d

dt
(µj∇ · jXj ) = −

∫
dV
∑
j

(
∂µj
∂t

∇ · jXj + µj∇ ·
∂jXj
∂t

)
(2.39)

in the second term in the last equation we transform the integral into a surface integral, i.e.

−
∫
dV
∑
j

d

dt
(µj∇ · jXj ) = −

∫
dV
∑
j

∂µj
∂t

∇ · jXj −
∑
j

∫
dΣnΣ ·

∂jXj
∂t

µj︸ ︷︷ ︸
for su�cient boundary
conditions this yields 0

(2.40)

We are left with the following expression for the second term in equation (2.37|2)∫
dV
∑
j

d

dt

(
jXj ·∇µj

)
= −

∫
dV
∑
j

∂µj
∂t

∇ · jXj (2.41)

inserting this we get for S̈

S̈ =
1
T

∫
dV

∑
r

Ȧrwr +
∑
j

∂µj
∂t

∇ · jXj

 (2.20)
=

1
T

∫
dV

−∑
r,k

wrνr,k
∂µk
∂t

+
∑
j

∂µj
∂t

∇ · jXj


(2.42)

now we can put
∑

k
∂µk
∂t as common factor in front and we get

S̈ =
1
T

∫
dV
∑
k

∂µk
∂t

[
−
∑
r

wrνr,k + ∇ · jXk

]
︸ ︷︷ ︸

from (2.18) this is −
∂ρXk
∂t

= − 1
T

∫
dV
∑
k

∂µk
∂t

∂ρXk
∂t

(2.43)

since µk is a function of {ρi}i we get

S̈ = − 1
T

∫
dV
∑
k,r

∂µk
∂ρr

∂ρr
∂t

∂ρXk
∂t

(2.44)
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It can be shown2 that the quadratic form∑
k,r

∂µk
∂ρr

∂ρXr
∂t

∂ρXk
∂t

(2.45)

is positive de�nit. That result in

S̈ ≤ 0 (2.46)

This is the general criterion for the stability of far from equilibrium states.

2.5. Summary and Perspective

The aim of this paper was to give a general introduction into complex systems and hydrodynamic

instabilites in the �rst chapter. In the second chapter the aim was to give an introduction to the

theory of far from equilibrium thermodynamics and the connection to the formation of complex

systems. Moreover I wanted to show that there exists a general criterion for which a nonequilibrium

system is stable.

That a far from equilibrium system is stable is one important point but that a far from equilibrium

system does form pattern is another. As a perspective I am going to investigate the need for the

formation of pattern in a far from equilibrium state in connection to this general criterion.

2with the help of the inequalities of the thermodynamic potentials, similar to the linear range
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