Biogenesis of Lipid Droplets From a Physical Point of View

Florian Wodlei

Institute of Physical Chemistry / Institute for Theoretical Physics

March 2007

Florian Wodlei Biogenesis of Lipid Droplets

イロン イヨン イヨン イヨン

Content

- 2 Elastomechanical Approach
 - The Lipid Droplet in Terms of Helfrichs Theory
- 3 Detaching of Lipid Droplet from Energetic Point of View
 Minimizing the Energy

Introduction and Biological Background Elastomechanical Approach

Elastomechanical Approach Detaching of Lipid Droplet

The Cell and its Organelles

Florian Wodlei Biogenesis of Lipid Droplets

・ロ・ ・ 御・ ・ 神・ ・ 神・

æ

The Cell and its Organelles

з

The Cell

The Cell and its Organelles

Endoplasmatic Reticulum

Florian Wodlei

Biogenesis of Lipid Droplets

イロト イヨト イヨト イヨト

The Cell and its Organelles

Lipid Droplet

Image: A math a math

The Cell and its Organelles

Membranes

Florian Wodlei Biogenesis of Lipid Droplets

イロン イヨン イヨン イヨン

The Cell and its Organelles

Phospholipids

イロト イヨト イヨト イヨト

The Cell and its Organelles

Types of Phosholipids

(日) (周) (王) (王)

Helfrichs Theory

In 1973 W. Helfrich published his work about "*Elastic Properties of Lipid Bilayers: Theory and Possible Experiments*"

$$G = \underbrace{k_c \int dA(c - c_o)^2}_{Curvature \ Energy} + \underbrace{\gamma \int dA}_{Surface \ Energy}$$

where $c := \frac{1}{R_1} + \frac{1}{R_2}$ is the Mean Curvature and c_o is the Spontanous Curvature

The Lipid Droplet in Terms of Helfrichs Theory

(注) ▶

Mean Curvatures

イロト イヨト イヨト イヨト

The Lipid Droplet in Terms of Helfrichs Theory

 \rightarrow see blackboard

The Lipid Droplet in Terms of Helfrichs Theory

イロン イヨン イヨン イヨン

-2

Our Problem

Is it possible that the Lipid Droplet detach from the ER? \rightarrow see blackboard

Florian Wodlei Biogenesis of Lipid Droplets

Minimizing the Energy

- Analytically (by solving the corresponding Euler-Lagrange Equations)
- Surface Evolver (by internally optimizing (Gradient Method))
- via own Program (by nummerical minimizing the energy)

イロト イポト イヨト イヨト

Differential Geometry of Surfaces

With the help of differential geometry one gets the **Mean Curvatures**:

Explizit gilt

Differential Geometry of Surfaces

Curvature Tensor

$$\mathbf{b} = \left(\begin{array}{c} \frac{\partial \mathbf{N}}{\partial u} \cdot \frac{\partial \mathbf{r}}{\partial u} & \frac{\partial \mathbf{N}}{\partial u} \cdot \frac{\partial \mathbf{r}}{\partial v} \\ \frac{\partial \mathbf{N}}{\partial v} \cdot \frac{\partial \mathbf{r}}{\partial u} & \frac{\partial \mathbf{N}}{\partial v} \cdot \frac{\partial \mathbf{r}}{\partial v} \end{array}\right)$$

And than the Mean Curvature is:

$$c = b_{ij}g^{ij} = tr\mathbf{b}$$

where g^{ij} is the Metric Tensor:

$$\mathbf{g} = \left(\begin{array}{ccc} \frac{\partial \mathbf{r}}{\partial u} \cdot \frac{\partial \mathbf{r}}{\partial u} & \frac{\partial \mathbf{r}}{\partial u} \cdot \frac{\partial \mathbf{r}}{\partial v} \\ \frac{\partial \mathbf{r}}{\partial v} \cdot \frac{\partial \mathbf{r}}{\partial u} & \frac{\partial \mathbf{r}}{\partial v} \cdot \frac{\partial \mathbf{r}}{\partial v} \end{array}\right)$$

Florian Wodlei Biog

Biogenesis of Lipid Droplets

イロト イポト イヨト イヨト

Minimizing the Energy

A good Parametrization

 \rightarrow see blackboard

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Minimizing the Energy

Surface Evolver

Surface Evolver (by Ken Brakke)

Florian Wodlei Biogenesis of Lipid Droplets

イロト イヨト イヨト イヨト

Is the Process of Detaching Energetically Favorable?

Florian Wodlei

Biogenesis of Lipid Droplets

Aim of the Thesis

- Is it possible that Lipid Droplets detach from ER?
- If yes, what is the obtained volume?
- If no, how must the parameters be adjusted, that it detaches.
- Generate a Phase Diagram